Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Virology ; 567: 1-14, 2022 02.
Article in English | MEDLINE | ID: covidwho-1628759

ABSTRACT

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Intracellular Membranes/metabolism , Viral Replicase Complex Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Mice , Murine hepatitis virus , Mutation , Protein Binding , Protein Domains , RNA, Viral/biosynthesis , Viral Replicase Complex Proteins/chemistry , Viral Replicase Complex Proteins/genetics , Viral Replication Compartments/metabolism
2.
Nano Lett ; 21(5): 2272-2280, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1104424

ABSTRACT

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. The presence of the SARS-CoV-2 spike protein elicits a robust, 2-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.


Subject(s)
Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Nanotubes, Carbon , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Angiotensin-Converting Enzyme 2/metabolism , Antigens, Viral/analysis , Humans , Immobilized Proteins/metabolism , Nanotechnology , Pandemics , Protein Binding , SARS-CoV-2/immunology , Spectrometry, Fluorescence , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL